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Abstract 

It is argued that a number is irrational if it 

cannot be represented as the ratio of two 

integers. The first mathematicians to 

demonstrate that e is both transcendental 

and irrational were Lambert and Euler. 

There have been several extensions of that 

argument to plausible powers of e and 

further evidence of the irrationality and 

transcendence of e since then. This article 

explores many historical examples when 

mathematicians have shown that e is 

irrational and beyond its rational 

capabilities.  
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Introduction 
• Transcendence of Rational 

Powers of e 
• No non-zero polynomial 

may have a transcendental number 

as its root, and such numbers can 

not have rational coefficients. 

Always remember that just because 

a number is transcendental does not 

mean it is unreasonable. There is 

no such thing as a transcendental 

number, even if every non-square 

integer has an irrational square 

root. Any integer that is not 

transcendental is called an 

algebraic number.  

The first proof that e is 

transcendental was given by 

Hermite [22, 23]. After that, 

Lindemann proved that eα is 

transcendental when α is a non-

zero transcendental number [24, 

25], building on these earlier 

results. Because eiπ = −1, a real 

number, he also proved that π is 

transcendental by using this. 

Weierstrass [26] extended this 

demonstration, which led to the 

well-known Lindemann-

Weierstrass theorem. This proof 

was simplified by Gordan [28] and 

Hilbert [27]. If an algebraic number 

satisfies a ˸= 0, 1 and b is an 

irrational but not transcendental 

algebraic number, then ab is a 

transcendental number, according 

to the GelfondSchneider theorem 

[29], a related theorem. Following 

this, Baker [30] expanded upon 

these two theorems much further. 

A further extension of all these 

theorems is Schanuel's conjecture 

[31]. Bernard [32] proved that e is 

transcendent by using symmetric 

and multivariate polynomials. 

The scope of this article is limited 

to discussing the transcedence of 

e's reasoning powers. Suppose that 

the algebraic function ev is defined 

by the equation c0 + c1ev + c2e2v 

+... + cnenv = 0 (4.1), where c0 and 

cn are non-zero integers and ct(0 < 

t ≤ n) is an integer. When v is a 

rational number, we may 

demonstrate that ev is 

transcendental by using this. An 

extension of Niven's polynomials is 

now employed:  

 

 
fk(x) equals v2k plus 2xk.[(x − 1)...(x − n)]k+1 = 0 
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Conclusion 

 
This piece examined numerous demonstrations of 

irrationality and transcendence of rational powers of e 

established by mathematicians throughout history.. 
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